
Module II System Software(S5 CSE)

1 Prepared By: Dona Jose, AP, CSE, VJCET
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

MODULE II

• Assemblers

o Basic Functions of Assembler

o Assembler output format – Header, Text and End Records

o Assembler data structures

o Two pass assembler algorithm

o Hand assembly of SIC/XE program

o Machine dependent assembler features

▪ Instruction Format and Addressing Modes

▪ Program Relocation

• Assembler

o Assembler is a system software which is used to convert an assembly language program

to its equivalent object code.

o The design of assembler is depends upon the machine architecture.

o Assembler translates mnemonic operation codes to their machine language equivalents

o It also assigns machine addresses to symbolic labels

• Basic Functions of an Assembler

1. Convert mnemonic operation codes to their machine language equivalents

▪ Eg: Translate STL to 14

2. Convert symbolic operands to their equivalent machine addresses

▪ Eg: Translate the operand RETADR to 1033(address of RETADR)

3. Convert the data constants to internal machine representations

▪ Eg: Translate EOF to 454F46

4. Build the machine instructions in the proper format

5. Write the object program and the assembly listing

o The assembler must also process statements called assembler directives or pseudo

instructions which are not translated into machine instructions. Instead they provide

instructions to the assembler itself

▪ RESB and RESW- instruct the assembler to reserve memory locations without

generating data values.

▪ BYTE and WORD – direct assembler to generate constants as part of the object

program

o All of these functions except number 2 can easily be accomplished by sequential

processing of the source program, one line at a time.

o The difficulty with number 2 is:

▪ Forward reference: Reference to a label that is defined later in the program.

COPY START 0

LDA

MUL GAMMA

STA ALPHA

ALPHA RESW 1

 WORD 10

GAMMA WORD 20

ASSEMBLE

R

Source Program Object Code

BETA

BETA

Module II System Software(S5 CSE)

2 Prepared By: Dona Jose, AP, CSE, VJCET
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

▪ If we attempt to translate the program line by line, we will be unable to process this

statement because we do not know the address that will be assign to BETA.

o Solution: Introduce 2 passes

• First pass: Scan the source program for label definitions and assign addresses

• Second pass: Perform actual translation

• Assembler output format(Format of object program)

o Assembler must write the generated object code onto some output devices. This object

program will later be loaded into memory for execution.

o The object program format contains 3 records.

• Assembler Design

o An assembler can be

▪ Single pass assembler

▪ 2 pass assembler or

▪ Multipass assembler

• The functions of the two passes assembler

o Pass 1 (define symbols)

1. Assign addresses to all statements in the program

2. Save the addresses assigned to all labels for use in Pass 2

3. Perform some processing of assembler directives

4. Write intermediate file.

o Pass 2 (assemble instructions and generate object program)

1. Assemble instructions (generate opcode and look up addresses)

2. Generate data values defined by BYTE, WORD

3. Perform processing of assembler directives not done during Pass 1

4. Write the object program and the assembly listing

Module II System Software(S5 CSE)

3 Prepared By: Dona Jose, AP, CSE, VJCET
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

• Assembler data structures

o Assembler uses three main data structures

▪ Location Counter(LOCCTR)

▪ Operation Code Table(OPTAB)

▪ Symbol Table(SYMTAB)

o LOCCTR

▪ It is a variable that is used to help in the assignment of addresses.

▪ LOCCTR is initialized to be the beginning address specified in the “START”

statement

▪ After each statement is processed, the length of the assembled instruction or data

area to be generated is added to LOCCTR

• LOCCTR = LOCCTR + (instruction length/size of data area)

▪ The current value of LOCCTR gives the address to the label encountered

o OPTAB

▪ It must contain the mnemonic operation code and its machine language equivalent.

▪ Used to lookup mnemonic operation codes and translate them to their machine

language equivalent.

▪ It may contain instruction format and length.

▪ In Pass 1:

• OPTAB is used to look up and validate operation code in the source program.

• Must search the OPTAB to find the instruction length for incrementing

LOCCTR.

▪ In Pass 2

• OPTAB is used to translate the operation codes to machine language.

• It is used to find which instruction format is used.

▪ The information in OPTAB is predefined when the assembler itself is written.

▪ Implementation

• Design a special hash table with mnemonic operation code as the key. It

provides fast retrieval with minimal searching.

• It is a static table. Entries are not normally added to or retrieved from it.

o SYMTAB

▪ SYMTAB contains name and address for each label in the source program, together

with flags to indicate error conditions (Ex: symbols defined in two different places).

▪ It may also contain label type, length etc.

▪ Pass 1: Labels are entered in to SYMTAB along with their assigned addresses (from

LOCCTR)

▪ Pass 2: Operands are looked up in SYMTAB to obtain the addresses to be inserted

in the assembled instructions.

▪ It is a dynamic table

• Usually organize as a hash table for efficiency of insertion and retrieval.

• Choose the hash function carefully

Module II System Software(S5 CSE)

4 Prepared By: Dona Jose, AP, CSE, VJCET
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

• Two Pass Assembler Algorithm

Algorithm Pass1

{

Read the input line

If OPCODE=’START’

{

 starting address = #OPERAND

 LOCCTR = starting address

 Write line to intermediate file

 Read next input line

}

Else

 LOCCTR = 0

While OPCODE != ‘END’ do

{

 Write line to intermediate file along with LOCCTR

 If this is not a comment line

 {

 If there is a symbol in the label field

 {

 Search SYMTAB for LABEL

 If found

 Set error flag(Duplicate Symbol)

 Else

 Insert (LABEL, LOCCTR) into SYMTAB

 }

 Search OPTAB for OPCODE

 If found

 LOCCTR = LOCCTR + 3

 Else if OPCODE = ‘WORD’

 LOCCTR = LOCCTR + 3

 Else if OPCODE = ‘RESW’

 LOCCTR = LOCCTR + 3 x #[OPERAND]

 Else if OPCODE = ‘RESB’

 LOCCTR = LOCCTR + #[OPERAND]

 Else if OPCODE = ‘BYTE’

 LOCCTR = LOCCTR + length of constant in bytes

 Else

 Set error flags

 }

Read next input line

}

Write last line to intermediate file

Save (LOCCTR – starting address) as program length.

}

Module II System Software(S5 CSE)

5 Prepared By: Dona Jose, AP, CSE, VJCET
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Algorithm Pass2

{

 Read the first input line from intermediate file

 If OPCODE = ‘START’

 {

 Write the line into assembly listing

 Read next input line

 }

 Write Header records to object program

 Initialize first Text record

 While OPCODE != ‘END’ do

 {

 If this is not a comment line

 {

 Search OPTAB for OPCODE

 If found

 {

 If there is a symbol in OPERAND field

 {

 Search SYMTAB for operand

 If found

 Store symbol value as operand address

 Else

 Set error flag

 }

 Else

 Set 0 as operand address

 Assemble the object code instruction

 }

 Else if OPCODE = ‘BYTE’ or ‘WORD’

 Convert constant to object code

 If object code will not fit into the current Text record

 {

 Write Text record to object program

 Initialize new Text record

 }

 Add object code to Text record

 }

 Write the line into assembly listing along with object code

 Read next input line

 }

 Write last Text record to object program

 Write End record to object program

 Write last listing line

}

Module II System Software(S5 CSE)

6 Prepared By: Dona Jose, AP, CSE, VJCET
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Example:

Pass 1 Inputs:

Input Program

PGM1 START 1000

 LDA ALPHA

 MUL BETA

 STA GAMMA

ALPHA WORD 2

BETA WORD 4

GAMMA RESW 1

 END 1000

Pass 1 Outputs:

Intermediate File

PGM1 START 1000

1000 LDA ALPHA

1003 MUL BETA

1006 STA GAMMA

1009 ALPHA WORD 2

100C BETA WORD 4

100F GAMMA RESW 1

 END 1000

Pass 2 Outputs:

Assembly Listing

PGM1 START 1000

1000 LDA ALPHA 001009

1003 MUL BETA 20100C

1006 STA GAMMA 0C100F

1009 ALPHA WORD 2 000002

100C BETA WORD 4 000004

100F GAMMA RESW 1

 END 1000

• Machine Dependent Assembler Features

o Instruction Format and Addressing Modes

▪ SIC

• Word size = 3 bytes

• Memory size = 215 bytes

• It has only 5 registers: A,X,L,PC and SW

• Supports only one instruction format: 3 byte instruction

• Addressing modes supported: Direct and Indexed

▪ SIC/XE

• Memory size = 220 bytes

• This supports four different types of instruction types

o 1 byte instruction

o 2 byte instruction

o 3 byte instruction

o 4 byte instruction

Opcode Table(OPTAB)

Opcode Hexacode

LDA 00

MUL 20

STA 0C

Symbol Table(SymTAB)

Label Name Label Address

ALPHA 1009

BETA 100C

GAMMA 100F

Object Program

HPGM1 001000000012

T00100009001009201000C0C100F

T001009060000020000004

E001000

Module II System Software(S5 CSE)

7 Prepared By: Dona Jose, AP, CSE, VJCET
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

• Instructions can be:

o Instructions involving register to register

o Instructions with one operand in memory, the other in Accumulator

o Extended instruction format

• Addressing Modes are:

o Index Addressing: Opcode m, x

o Indirect Addressing: Opcode @m

o PC-relative: Opcode m

o Base relative: Opcode m

o Immediate addressing: Opcode #c

o Extended instruction: +opcode m

• Register-to-register instructions are used wherever possible. Register-to-

register instructions are faster than the corresponding register-to-memory

operations because they are shorter and do not require another memory

reference.

o Assembler converts the mnemonic operation code to machine language

using OPTAB.

o Assembler changes each register mnemonic to its numeric equivalent. To

do this SYMTAB would be preloaded with the register names(A,X, etc.)

and their values(0,1, etc.).

▪ Eg: COMPR A,S

▪ Its object code is A004

• Consider the following statement

o START specifies the beginning of the program

o 0 indicates it is a relocatable program

• Register to memory instructions

o Instructions that refer to memory are normally assembled using either

program counter relative or base relative mode.

o The correct target address is calculated by adding the displacement to the

contents of Program Counter(PC) or Base Register(B).

▪ Program Counter Relative: -2048 ≤ displacement ≤ +2047

▪ Base Relative: 0≤displacement ≤ 4095

o If displacements are too large, then the 4-byte extended instruction

format must be used. It contains 20 bit address field.

o The assembler directive BASE is used in conjunction with base relative

addressing.

• Program-Counter Relative Addressing Mode

o Usually format-3 instruction format is used.

-2048 ≤ disp ≤ 2047

o Target Address(TA) = (PC) + disp

o disp = TA – (PC)

Module II System Software(S5 CSE)

8 Prepared By: Dona Jose, AP, CSE, VJCET
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

o Eg:

▪ Translate FIRST STL RETADR

▪ Hex code for STL is 14 => 0001 0100

• This is 8 bit wide. Delete the rightmost 2 bits and place the

remaining part in op fields.

▪ TA = address of RETADR (from SYMTAB)= (0030)16

▪ After fetching this instruction (PC) = (0003) 16

▪ disp = TA – (PC) = (0030)16 - (0003) 16= (002D) 16

▪ Take the rightmost 12 bit disp (02D)

▪ If n=i, this instruction is neither indirect nor immediate addressing

mode.

o Eg:

▪ Translate J CLOOP

▪ Hex code for J is 3C => 0011 1100

• This is 8 bit wide. Delete the rightmost 2 bits and place the

remaining part in op fields.

▪ TA = address of CLOOP (from SYMTAB)= (0006)16

▪ After fetching this instruction (PC) = (001A) 16

▪ disp = TA – (PC) = (0006)16 - (001A) 16= (FFEC) 16

▪ Take the rightmost 12 bit disp (FEC)

• Base Relative Addressing Mode

o The base register is under the control of the programmer. The

programmer must tell the assembler what the base register will contain

during the execution of the program.

o Base register is used to mention the displacement value.

o TA = (B) + disp

o Assembler directives used are:

▪ BASE: Informs the assembler that the base register will contain the

address of #operand

▪ NOBASE: Inform the assembler that the content of base register

can no longer be used for addressing.

0000 FIRST STL RETADR

 - - - - - - -

 - - - - - - -

0030 RETADR - - - - -- --

0006 CLOOP- - - -

 - - - - - - -

 - - - - - - -

0017 J CLOOP

Module II System Software(S5 CSE)

9 Prepared By: Dona Jose, AP, CSE, VJCET
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

o Eg:

▪ Translate STCH BUFFER,X

▪ LDB instruction loads the address of LENGTH in the base register.

▪ BASE directive explicitly tells the assembler that it has the value of

LENGTH.

▪ Hex code for STCH is 54 => 0101 0100

• This is 8 bit wide. Delete the rightmost 2 bits and place the

remaining part in op fields.

▪ TA = address of BUFFER (from SYMTAB)= (0036)16

▪ (B) = (0033)16

▪ disp = TA – (B) = (0036)16 - (0033) 16= (0003) 16

▪ Take the rightmost 12 bit disp (003)

• Immediate Addressing Mode

o No memory reference is involved

o Eg:

▪ Hex code for LDA is 00 => 0000 0000

▪ disp = TA = (0003)16

• Immediate with PC-relative mode

o Eg:

▪ Translate LDB #LENGTH

▪ Hex code for LDB is 68 => 0110 1000

▪ TA = address of LENGTH = 0033

0003 LDB #LENGTH

 BASE LENGTH

 -

 -

0033 LENGTH RESW 1

0036 BUFFER RESW 4096

 -

 -

104E STCH BUFFER,X

 -

 -

0020 LDA #3

0003 LDB #LENGTH

 -

 -

0033 LENGTH RESW 1

Module II System Software(S5 CSE)

10 Prepared By: Dona Jose, AP, CSE, VJCET
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

▪ After fetching this instruction (PC) = 0006

▪ disp = TA – (PC) = (0033)16– (0006)16 = (002D)16

• Indirect with PC-relative mode

o Eg:

▪ Translate J @RETADR

▪ Hex code for J is 3C => 0011 1100

▪ TA = address of RETADR = 0030

▪ After fetching this instruction (PC) = (002D)16

▪ disp = TA – (PC) = (0030)16– (002D)16 = (0003)16

• Extended Instruction Format

o Eg: +LDT #4096

▪ Hex code for LDT is 74 => 0111 0100

▪ TA = (01000)16

o Program Relocation

▪ Absolute Program

• The program must be loaded at the address that specified at assembly time.

▪ Need for program relocatable

• Sometimes it is required to load and run several programs at the same time.

• The system must be able to load these programs wherever there is place in the

memory.

• The exact starting is not known until the load time.

• Consider the following SIC\XE program

002A J @RETADR

 -

 -

0030 RETADR RESW 1

 COPY START 0

0000 -

 -

0006 CLOOP +JSUB RDREC 4B101036

 -

 -

1036 RDREC CLEAR X B410

Module II System Software(S5 CSE)

11 Prepared By: Dona Jose, AP, CSE, VJCET
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

• The above diagram shows the concept of relocation. Initially the program is

loaded at location 0000. The instruction JSUB is loaded at location 0006. The

address field of this instruction contains 01036, which is the address of the

instruction labeled RDREC.

• The second figure shows that if the program is to be loaded at new location

5000. The address of the instruction JSUB gets modified to new location 6036.

• The third figure shows that if the program is relocated at location 7420, the

JSUB instruction would need to be changed to 4B108456 that correspond to

the new address of RDREC.

• Some instructions do not require modification.

o Instruction operand is not a memory address.

▪ Eg: LDA #3

o Instruction address is specified using PC relative or Base relative

▪ Eg: STL RETADR

 It is assembled using PC or Base relative addressing.

• The only part of the program that require modification at load time are those

that specify direct addresses.

• The assembler can identify those part of object program that need

modification.

• Relocatable program is a program that can be loaded into memory where

there is a room, rather than specifying a fixed address at assembly time.

• Relocatable programs use a Modification record to store the starting location

and the length of the address field to be modified.

Module II System Software(S5 CSE)

12 Prepared By: Dona Jose, AP, CSE, VJCET
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

• Modification Record format:

o It is placed in between last text record and end record.

o One modification record is created for each address to be modified.

o The length is stored in half-bytes (4 bits).

o The starting location is the location of the byte containing the leftmost

bits of the address field to be modified. If the length field contains an odd

number of half-bytes, the starting location begins in the middle of the

first byte.

• Object Program Format is:

• The object program is:

Module II System Software(S5 CSE)

13 Prepared By: Dona Jose, AP, CSE, VJCET
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Previous Year University Questions

1. List out the basic functions of Assemblers with proper examples.

2. What is meant by forward reference? How it is resolved by two pass assembler?

3. Describe the format of object program generated by the two-pass SIC assembler

algorithm

4. Explain the format of the object program generated by a two-pass SIC Assembler,

highlighting the contents of each record type.

5. Explain the syntax of the records in the Object Program File.

6. Describe the data structures used in the two pass SIC assembler algorithm

7. Explain the data structures used and their purposes in a two-pass assembler

8. What are the uses of OPTAB and SYMTAB during the assembling process? Specify the

uses of each during pass 1 and pass2 of a two pass assembler

9. Give the algorithm for pass 1 of a two pass SIC assembler.

10. With the aid of an algorithm explain the Second pass of a Two Pass Assembler

11. Explain the two passes of the assembler algorithm with proper example.

12. Consider the statements in SIC program. Consider the program being assembled using a 2

pass assembler.

What will be the address value assigned to the symbol NEW during pass 1?

13. Explain with suitable examples, how the different instruction formats and addressing

modes of SIC/XE is handled during assembling.

14. Suppose the address associated with the symbol RETADR is 0030 and the machine

equivalent code for STL is 14. Assemble the given SIC/XE instruction, by clearly

indicating the instruction format, addressing mode and the setting of different flag bits,

given the address value assigned to RETADR is 0030.

15. With suitable example, explain the concept of Program Relocation.

16. Write down the format of Modification record. Describe each field with the help of an

example

17. What will happen if a SIC program is loaded in a location different from the starting address

specified in the program? Will the program work properly? Justify your answer

18. Explain program relocation with examples. Is there a need to use modification records for the

given SIC/XE program segment? Explain your answer. If yes, show the contents of

modification record

19. What is a relocatable program? Do all instructions of SIC/XE machine program need

modification because of relocation? Justify your answer

Module II System Software(S5 CSE)

14 Prepared By: Dona Jose, AP, CSE, VJCET
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

